研招网 > 湖南研招网 > 湖南师范大学 > 考研大纲

2014年湖南师范大学077502计算机软件与理论考研大纲

  考研网快讯,据湖南师范大学研究生院消息,2014年湖南师范大学计算机软件与理论考研大纲已发布,详情如下:

  2014年硕士研究生入学考试自命题考试大纲
  考试科目代码:[601]考试科目名称:高等数学
  一、试卷结构

  1)试卷成绩及考试时间
  本试卷满分为150分,考试时间为180分钟。
  2)答题方式:闭卷、笔试
  3)试卷内容结构
  高等数学部分75%线性代数部分25%
  4)题型结构
  a:单项选择题,5小题,每小题4分,共20分
  b:填空题,10小题,每小题4分,共40分
  c:解答题(包括证明题),9小题,每小题分,共90分
  二、考试内容与考试要求
  (一)高等数学部分
  1、函数、极限、连续
  考试内容
  函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立
  数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:
  函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质
  考试要求
  (1)理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
  (2)了解函数的有界性、单调性、周期性和奇偶性.
  (3)理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
  (4)掌握基本初等函数的性质及其图形,了解初等函数的概念.
  (5)理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
  (6)掌握极限的性质及四则运算法则.
  (7)掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
  (8)理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
  (9)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
  (10)了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
  2、一元函数微分学
  考试内容
  导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分
  考试要求
  (1)理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
  (2)掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
  (3)了解高阶导数的概念,会求简单函数的高阶导数.
  (4)会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
  (5)理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
  (6)掌握用洛必达法则求未定式极限的方法.
  (7)理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
  (8)会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
  3、一元函数积分学
  考试内容
  原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用
  考试要求
  (1)理解原函数的概念,理解不定积分和定积分的概念.
  (2)掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
  (3)会求有理函数、三角函数有理式和简单无理函数的积分.
  (4)理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
  (5)了解反常积分的概念,会计算反常积分.
  (6)熟练掌握用定积分表达和计算一些几何量和物理量(如平面图形的面积、旋转体的体积和侧面积、平行截面面积为已知的立体的体积、平面曲线的弧长、压力、功、引力等)及函数的平均值..
  4、常微分方程
  考试内容
  常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用
  考试要求
  (1)了解微分方程及其阶、解、通解、初始条件和特解等概念.
  (2)掌握变量可分离的微分方程及一阶线性微分方程的解法.
  (3)会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.
  (4)会用降阶法解下列形式的微分方程:
  和.
  (5)理解线性微分方程解的性质及解的结构.
  (6)掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
  (7)会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
  (8)会解欧拉方程.
  (9)会用微分方程解决一些简单的应用问题.
  5、无穷级数
  考试内容
  常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数
  考试要求
  (1)理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.
  (2)掌握几何级数与级数的收敛与发散的条件.
  (3)掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
  (4)掌握交错级数的莱布尼茨判别法.
  (5)了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.
  (6)了解函数项级数的收敛域及和函数的概念.
  (7)理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
  (8)了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.
  (9)了解函数展开为泰勒级数的充分必要条件.
  (10)掌握,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.
  (11)了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.
  6、向量代数和空间解析几何
  考试内容
  向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程
  考试要求
  (1)理解空间直角坐标系,理解向量的概念及其表示.
  (2)掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.
  (3)理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
  (4)掌握平面方程和直线方程及其求法.
  (5)会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
  (6)会求点到直线以及点到平面的距离.
  (7)了解曲面方程和空间曲线方程的概念.
  (8)了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.
  (9)了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.
  7、多元函数微分学
  考试内容
  多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用
  考试要求
  (1)理解多元函数的概念,理解二元函数的几何意义.
  (2)了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.
  (3)理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
  (4)理解方向导数与梯度的概念,并掌握其计算方法.
  (5)掌握多元复合函数一阶、二阶偏导数的求法.
  (6)了解隐函数存在定理,会求多元隐函数的偏导数.
  (7)了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
  (8)理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.
  8、多元函数积分学
  考试内容
  二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式曲线积分和曲面积分的应用
  考试要求
  (1)理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.
  (2)掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).
  (3)理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.
  (4)掌握计算两类曲线积分的方法.
  (5)掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.
  (6)了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.
  (7)会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).
  (二)线性代数
  1、行列式
  考试内容
  行列式的概念与基本性质行列式按行(列)展开克拉默法则
  考试要求
  (1)了解行列式的概念,掌握行列式的性质.
  (2)知道代数余子式的定义及性质.
  (3)会应用行列式的性质和行列式按行(列)展开定理计算行列式.
  (4)知道克拉默法则.
  2、矩阵及其运算
  考试内容
  矩阵的概念矩阵的运算及运算规律逆矩阵的概念和性质分块矩阵及其运算矩阵可逆的充分必要条件伴随矩阵
  考试要求
  (1)理解矩阵的概念,知道单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.
  (2)掌握矩阵的线性运算、乘法、转置以及它们的运算规律,方阵乘积的行列式的性质.
  (3)理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
  (4)知道分块矩阵及其运算规律,熟悉矩阵的行向量组与列向量组.
  3、矩阵的初等变换与线性方程组
  考试内容
  矩阵的等价矩阵的初等变换的性质与运用矩阵的秩线性方程组的解
  考试要求
  (1)熟练掌握用初等行变换把矩阵化成行阶梯开和行最简形;知道矩阵等价的概念.掌握用初等变换求可逆矩阵的逆矩阵的方法.
  (2)理解矩阵的秩的概念,了解初等变换不改变矩阵的秩的原理,掌握用初等变换求矩阵的秩的方法.了解矩阵的标准形与秩的关系和矩阵秩的基本性质.
  (3)理解线性方程组无解、有惟一解或有限多个解的充要条件.
  (4)熟练掌握用矩阵初等行变换求解线性方程组的方法.
  (5)了解矩阵方程AX=B有解的充要条件及必要条件.
  4、向量组的线性相关性
  考试内容
  向量组及其线性组合向量组的线性相关性向量组的秩线性方程组的解的结构向量空间
  考试要求
  (1)理解维向量的概念,理解向量组的概念及向量组与矩阵的对应.
  (2)理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
  (3)理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
  (4)理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
  (5)理解齐次线性方程组的基础解系的概念及系数矩阵的秩与全体解向量的秩之间的关系,熟悉基础解系的求法.理解非齐次线性方程组通解的构造.
  (6)知道向量空间、向量空间的基和维、向量生成空间、齐次线性方程组的解空间等概念.会求向量在一个基中的坐标.
  5、相似矩阵及二次型
  考试内容
  向量的内积、长度及正交性方阵的特征值与特征向量相似矩阵对称矩阵的对角化二次型及其标准形用配方法化二次型成标准形正定二次型
  考试要求
  (1)了解向量的内积、长度、下交、规范正交基、正交矩阵等概念,知道施密特下交化方法.
  (2)理解矩阵的特征值和特征向量的概念及性质,掌握矩阵的特征值和特征向量的求法.
  (3)了解相似矩阵的概念、性质,了解矩阵可相似对角化的充分必要条件.
  (4)了解实对称矩阵的特征值和特征向量的性质,掌握利用正交矩阵将对称矩阵化为对角阵的方法.
  (5)熟悉二次型及其矩阵表示,知道二次型的秩.掌握用正交变换把二次型化为标准形的方法.
  (6)会用配方法化二次型为标准形,知道惯性定理.
  (7)知道二次型的正定性及其判别法.
  6、线性空间与线性变换
  考试内容
  线性空间的定义与性质维数、基与坐标基变换与坐标变换线性变换线性变换的矩阵表示式
  考试要求
  (1)了解线性空间的概念,了解线性空间的基与维数,了解坐标的概念及n维线性空间Vn与数组向量空间Rn同构的原理。知道基变换与坐标变换的原理.
  (2)了解线性变换的概念,知道线性空间变换的像空间与核。会求线性变换的矩阵,知道线性变换在不同基中的矩阵彼此相似,知道线性的秩.
  三、参考书目
  [1]《高等数学》上册、下册,湖南师范大学数学与计算机科学学院组编,湖南师范大学出版社出版,2006
  [2]《高等数学》上册、下册,同济大学数学系,高等教育出版社,2007
  [3]《线性代数》,同济大学数学系,高等教育出版社,2007

  2014年硕士研究生入学考试自命题考试大纲
  考试科目代码:[865]考试科目名称:数据结构
  一、考试形式与试卷结构

  1)试卷成绩及考试时间:
  本试卷满分为150分,考试时间为180分钟。
  2)答题方式:闭卷、笔试
  3)试卷内容结构
  (一)客观题部分60%
  (二)主观题部分40%
  4)题型结构
  a:填空题,共20分
  b:选择题,共20分
  c:判断题,共20分
  c:阅读题,共10分
  c:简答题,共20分
  c:算法题,共60分
  二、考试内容与考试要求
  数据结构
  考试目标:
  "数据结构"是一门专业技术基础课。目的就是要培养他们的数据抽象能力,学会分析研究计算机加工的数据结构的特性,以便为应用涉及的数据选择适当的逻辑结构、存储结构及实现应用的相应算法,并掌握分析算法的时间和空间复杂度的技术。
  考试内容:
  一、绪论:
  1.熟悉各名词、术语的含义,掌握基本概念,特别是数据的逻辑结构和存储结构之间的关系;
  2.了解抽象数据类型的定义、表示和实现方法;
  3.熟悉类C语言的书写规范,特别要注意值调用和引用调用的区别,输入、输出的方式以及错误处理方式;
  4.理解算法五个要素的确切含义;
  5.掌握计算语句频度和估算算法时间复杂度的方法。
  二、线性表:
  1.线性表的逻辑结构定义、抽象数据类型定义和各种存储结构的描述方法;
  2.在线性表的两类存储结构(顺序存储和链式存储)上实现基本操作;
  3.一元多项式的抽象数据类型定义、表示及加法的实现。
  三、栈和队列:
  1.栈和队列的结构特性;
  2.在两种存储结构上如何实现栈和队列的基本操作和栈和队列在程序设计中的应用以及如何利用堆栈去模拟递归程序的运行。
  四、串:
  1.串的数据类型定义;
  2.串的三种存储表示:定长顺序存储结构、块链存储结构和堆分配存储结构;
  3.串的各种基本操作的实现及应用;串的模式匹配算法。
  五、数组和广义表:
  1.数组的类型定义和表示方法;
  2.特殊矩阵和稀疏矩阵的压缩存储方法及运算的实现;
  3.广义表的逻辑结构和存储结构、m元多项式的广义表表示以及广义表的操作的递归算法举例。
  六、树和二叉树:
  1.二叉树的定义、性质和存储结构;
  2.二叉树的遍历和线索化以及遍历算法的各种描述形式;
  3.树和森林的定义、存储结构、树和森林与二叉树的转换、遍历;
  4.树的多种应用;
  5.平衡二叉树、平衡二叉排序树的定义、性质极其应用。
  6.本章是该课程的重点内容之一。
  七、图:
  1.图的定义和术语;
  2.图的四种存储结构:数组表示法、邻接表、十字链表和邻接多重表;
  3.图的两种遍历策略:深度优先搜索和广度优先搜索;
  4.图的连通性:连通分量和最小生成树;
  5.拓扑排序和关键路径;两类求最短路径问题的解法。
  八、查找:
  1.讨论查找表(包括静态查找表和动态查找表)的各种实现方法:顺序表、有序表、树表和哈希表;
  2.关于衡量查找表的主要操作--查找的查找效率的平均查找长度的讨论。
  九、内部排序:
  1.讨论比较各种内部排序方法,插入排序、交换排序、选择排序、归并排序和基数排序的基本思想、算法特点、排序过程以及它们的时间复杂度分析。
  2.在每类排序方法中,从简单方法入手,重点讨论性能先进的高效方法(如,插入排序类中的希尔排序、交换排序类中的快速排序、选择排序类中的堆排序等)。
  考试要求:
  要求学生掌握基本概念、重要数据结构、基本算法,掌握各种数据结构的逻辑结构、存储结构和实现算法。根据当前计算机的应用发展举例说明数据结构的描述及应用的实现算法。
  三、参考书目
  1.严蔚敏、吴伟民编著,数据结构(C语言版),清华大学出版社,1999年2月

考研帮最新资讯更多

考研帮地方站

你可能会关心:

查看目标大学的更多信息

分数线、报录比、招生简章
一个都不能错过

× 关闭