2014年湖南师范大学070305高分子化学与物理考研大纲
考研网快讯,据湖南师范大学研究生院消息,2014年湖南师范大学高分子化学与物理考研大纲已发布,详情如下:2014年硕士研究生入学考试自命题考试大
考研网快讯,据湖南师范大学研究生院消息,2014年湖南师范大学高分子化学与物理考研大纲已发布,详情如下:
2014年硕士研究生入学考试自命题考试大纲
考试科目代码:[728]考试科目名称:物理化学
一、考试形式与试卷结构
1)试卷成绩及考试时间:
本试卷满分为150分,考试时间为180分钟。
2)答题方式:闭卷、笔试
3)试卷内容结构
化学热力学约48%
统计热力学约7%
电化学约20%
化学动力学约20%
胶体与界面化学约5%
4)题型结构
a:填空题,5小题,每小题4分,共20分
b:单选题,10小题,每小题2分,共20分
c:解答题(包括证明题),6~7小题,每小题20分或10分,共110分
二、考试内容与考试要求
(一)化学热力学部分
1、热力学第一定律及其应用
考试内容
热力学的一些基本概念,可逆过程,温度,焓,热容,Carnot循环,Joule-Thomson效应,等压热效应,等容热效应,反应进度,标准摩尔焓变,标准摩尔生成焓,标准摩尔燃烧焓,键焓,热力学第零定律,热力学第一定律及其对理想气体、相变过程和化学反应过程的应用,Hess定律,Kirchhoff定律,能量均分原理。
考试要求
理解并掌握热力学的一些基本概念:系统、环境、热、功、热力学能、焓、热容、状态函数及其特性、强度性质、广度性质、过程、途径、准静态过程、可逆过程与不可逆过程、过程方程式、热机效率、冷冻系数、节流过程、反应进度、标准摩尔焓变、标准摩尔生成焓、标准摩尔燃烧焓、键焓等。
熟练掌握一些基本定律和原理:热力学第零定律、热力学第一定律、Hess定律、Kirchhoff定律、能量均分原理。
熟练应用热力学第一定律:计算理想气体在自由膨胀、等温、等压、绝热、等容、节流膨胀、卡诺循环等过程中的ΔU,ΔH,Q和W等;可逆相变及不可逆相变过程的ΔU,ΔH,Q和W;等温或非等温化学反应过程的反应焓变、终态温度等。
2、热力学第二定律及其应用
考试内容
自发变化,热温商,熵,规定熵,Helmholtz自由能,Gibbs自由能,热力学概率,温-熵图,特性函数,特征变量,熵流、熵产生等基本概念。热力学第二定律,热力学第三定律,熵增原理,卡诺定理,Boltzmann熵定理等基本定律和原理。热力学基本方程,Maxwell关系式,Gibbs-Helmholtz方程等基本方程式。熵判据,Gibbs自由能判据,Helmholtz自由能判据及特性函数判据等判断自发变化方向和限度的判据。理想气体的各种过程、相变过程、化学反应过程的ΔS,ΔG和ΔA等的计算。
考试要求
掌握并理解自发变化、熵、规定熵、Helmholtz自由能、Gibbs自由能、热力学概率、特性函数、特征变量、熵流、熵产生等基本概念及其物理意义。熟练掌握热力学第二定律的各种表述及其意义,了解热力学第三定律的内容。能熟练地计算理想气体的各种过程、相变过程、化学反应过程的ΔS,ΔG和ΔA等状态函数变化,并熟练应用相应热力学判据判断过程的可逆性及自发变化的方向。能熟练应用热力学基本方程、Maxwell关系式、重要状态函数的定义式等,利用热力学方法进行一些状态函数间关系的推导证明。
3、多组分系统热力学及其在溶液中的应用
考试内容
多组分系统组成的表示法,偏摩尔量及其物理意义,化学势及其物理意义,各类系统中组分化学势的表达式及其标准状态,逸度、逸度因子、理想液态混合物、理想稀溶液、活度、活度因子、超额函数等的定义,理想液态混合物的通性,稀溶液的依数性,吉布斯集合公式和Gibbs-Duhem公式,Raoult定律和Henry定律,分配定律。
考试要求
了解并掌握用化学势讨论平衡问题的方法,如依数性公式的推导及应用;各组分化学势的表示及其各种标准态;等温、等压下由纯组分混合制备混合物或溶液时系统ΔG的计算。理解偏摩尔量概念及其物理意义;吉布斯集合公式和Gibbs-Duhem公式的物理意义及其应用;理想液态混合物和理想稀溶液的的定义及物理意义;掌握Raoult定律和Henry定律及其各种应用;理想液态混合物的性质;稀溶液依数性的概念及其通过依数性测定溶质分子量的方法;逸度及逸度因子的的概念,活度的概念及其测定的方法,超额函数的概念,无热溶液、正规溶液的特点。掌握分配定律及其应用。
4、相平衡
考试内容
多相平衡的一般条件,相律及其应用,Clapeyron方程和Clapeyron-Clausius方程,外压与蒸汽压的关系,单组分系统的相图,超临界状态,杠杆规则,二组分系统的气-液相图和固-液相图及其应用,等边三角形坐标表示法及三组分系统的相图及应用,二级相变。
考试要求
了解相律的推导过程;能看懂部分互溶的三液体系统和二固体和一液体的水盐系统相图并了解其应用;初步了解二级相变。掌握相、组分数和自由度等概念及理解其意义,并能利用相律进行相关计算;掌握相律在相图中的应用;掌握单组分系统相图的特征;熟练掌握二组分体系的气-液相图和固-液相图的意义及相图的绘制和应用;掌握杠杆规则及其应用。掌握三组分系统等边三角形坐标表示法;熟练掌握Clapeyron方程和Clapeyron-Clausius方程及其应用。
5、化学平衡
考试内容
反应进度,化学反应的亲和势,化学反应的平衡条件、平衡常数、等温方程式,平衡常数的表示式,复相化学平衡,标准摩尔生成Gibbs自由能、标准状态下反应的Gibbs自由能变化值,各种因素如温度、压力及惰性气体对化学平衡的影响,同时化学平衡,反映的耦合,反应有利温度及标准状态下反应的Gibbs自由能变化值的近似计算或估算。
考试要求
了解如何用化学势讨论化学平衡,比如化学反应等温式的导出;反应进度的概念;三类反应生产条件的理论分析(常温常压气相反应,液相反应,高温高压气相反应);对同时平衡、反应耦合和对复杂体系近似计算等的处理方法。掌握用化学反应等温式判断反应进行的方向;各种平衡常数的表示及其相互关系;温度对平衡常数的影响及其应用;压力、惰性气体等对平衡的影响;由标准摩尔生成Gibbs自由能计算平衡常数的方法;从平衡常数计算平衡转化率和平衡组成的方法。
6、统计热力学基础
考试内容
统计系统的分类,统计热力学的研究方法及基本假定,最概然分布,摘取最大项法及其原理,量子统计方法及其应用,配分函数的定义及其物理意义,配分函数与热力学函数的关系,各种运动形式的配分函数的计算方法及其在简单分子热力学函数计算方面的应用,单原子和双原子分子的统计熵的计算,自由能函数,热函函数,用配分函数计算标准状态下反应的Gibbs自由能变化值和平衡常数。
考试要求
了解热力学三大定律的统计解释,量子统计方法及其应用。掌握统计热力学的基本假定,宏观态、微观态和热力学几率等基本概念,Maxwell-Boltzmann分布律的物理意义,配分函数的概念和各种运动形式的配分函数计算以及配分函数与热力学函数的关系,单原子和双原子分子统计熵的计算方法,从配分函数计算理想气体反应的平衡常数的方法。
7、电解质溶液
考试内容
电化学中的基本概念,原电池,电解池,离子的电迁移率,离子迁移数及其测定,电导,电导率,摩尔电导率,电导测定的应用,电解质的平均活度和平均活度因子,离子强度,离子氛,Faraday电解定律,离子独立移动定律,Ostwald稀释定律,强电解质溶液理论:Debye-Hükel离子互吸理论,Debye-Hükel-Onsager电导理论,Debye-Hükel极限公式。
考试要求
了解迁移数的意义及常用的测定迁移数的方法,了解强电解质溶液理论的基本内容及适用范围。掌握电化学的基本概念,Faraday电解定律,电导率和摩尔电导率的意义及它们与溶液浓度的关系;掌握迁移数与摩尔电导率、离子电迁移率之间的关系,并能熟练进行计算;熟悉离子独立移动定律及电导测定在如下几方面的应用:水纯度的检验,弱电解质的解离度和解离常数的计算,难溶盐溶解度的测定及计算,电导滴定;理解电解质的离子平均活度、平均活度因子的意义及其计算方法,会计算离子强度和使用Debye-Hükel极限公式。
8、可逆电池的电动势及其应用
考试内容
可逆电池形成的必要条件,可逆电极的类型,电池的书写方法。电动势的测定,可逆电池热力学,电动势产生的机理和氢标准电极的作用,电动势测定的应用。
考试要求
了解对消法测电动势的基本原理和标准电池的作用,电动势产生的机理和氢标准电极的作用,液体接界电势的概念及消除方法。掌握可逆电池的书写方法,熟练、正确地写出电极反应和电池反应,能熟练地应用Nernst方程计算电极电势和电池的电动势,利用电化学测定数据计算热力学函数的变化值,可由电池反应设计电池。熟悉电动势测定的主要应用,会利用相应测定数据计算电解质溶液的平均活度因子、难溶盐的活度积以及弱酸或弱碱的解离常数、溶液的pH等。
9、电解与极化作用
考试内容
分解电压,极化作用,极化曲线,电解时电极上的竞争反应,金属的电化学腐蚀、防腐与金属的钝化,化学电源。
考试要求
了解分解电压的意义,极化现象,极化作用及其分类,超电势及其影响因素,氢超电势理论,电化学腐蚀的原因及防腐的方法,化学电源的类型及其应用。了解并掌握产生极化的原因及极化现象的应用,电解池和原电池极化曲线的异同点,Tafel公式的物理意义及其在计算氢超电势方面的应用,析出电势与电极上的放电次序以及在金属离子分离方面的应用。
10、化学动力学基础(一)
考试内容
化学动力学的一些基本概念:基元反应,非基元反应,反应速率,反应机理,反应级数,反应分子数,速率常数,半衰期,活化能等。具有简单级数的反应,反应级数的测定,对峙反应,平行反应,连续反应,链反应,温度对反应速率的影响,拟定反应历程的一般方法,及处理反应历程时一些常用的近似处理方法。基元反应的质量作用定律,微观可逆性原理,反应独立共存原理。
考试要求
了解基元反应,非基元反应,反应速率,反应机理,反应级数,反应分子数,半衰期等基本概念,了解速率常数及其物理意义和影响因素,理解活化能的概念、基元反应活化能的物理意义及其估算方法。熟练掌握及应用基元反应的质量作用定律、微观可逆性原理和反应独立共存原理。掌握零级、一级、二级、三级等具有简单级数的反应的特点,能利用实验数据确定反应级数,并能熟练地利用速率方程进行相关计算。对于对峙反应,平行反应,连续反应要掌握它们各自的特点,并进行一些简单计算。掌握温度对反应速率的影响,对复合反应能确定有利于制备目标产物的温度条件,明确Arrhenius公式中各项的物理意义并掌握活化能的求算方法。掌握链反应的特点,会用稳态近似、平衡假设和速控步等近似方法从复杂反应的机理推导速率方程。
11、化学动力学基础(二)
考试内容
简单碰撞理论、过渡态理论、单分子反应的Linedemann理论和RRKM理论及与上述理论相关的一些基本概念,分子反应动态学简介,在溶液中进行的反应、光化学反应和催化反应动力学,快速反应的几种测试手段。
考试要求
了解单分子反应的RRKM理论的基本要点,了解弛豫法适用的条件及用弛豫法计算快速对峙反应的速率常数,了解分子反应动态学的发展概况、常用实验方法和该研究的理论意义。了解溶液反应的特点、溶剂对反应的影响,会利用原盐效应判断离子强度对溶液中有离子参加的反应速率的影响。了解光化学反应的基本定律、光化学平衡与热化学平衡的区别,了解催化剂的特征、各类催化反应的特点和产生化学振荡的原因。
掌握简单碰撞理论的基本要点,过渡态理论的基本要点和热力学、统计热力学两种处理方法,会利用简单碰撞理论和过渡态理论计算一些简单反应的速率常数,掌握活化能、阈能和活化焓等能量之间的关系。掌握单分子反应的Linedemann理论的基本要点。掌握量子产率的计算并会处理简单的光化学反应的动力学问题。会处理酶催化反应的动力学问题。
12、表面物理化学
考试内容
表面化学中的一些基本概念,如比表面、表面张力、表面Gibbs自由能、润湿、铺展、吸附等,表面热力学的基本公式,弯曲表面上的附加压力和蒸汽压,溶液的表面吸附,液-液界面的性质,膜,液-固界面现象,表面活性剂及其作用,固体表面的吸附,气-固相表面催化反应。
考试要求
理解表面化学中的基本概念,掌握表面张力和表面Gibbs自由能概念的异同点,了解表面张力与温度的关系。了解表面活性的概念及其原理,表面活性剂的分类及其几种重要作用。了解液-液、液-固界面的铺展与润湿情况,理解气-固表面的吸附本质及吸附等温线的主要类型,了解Freundlich等温式和乔姆金方程式及其适用的吸附类型,了解化学吸附和物理吸附的区别。
掌握表面热力学的基本公式,并能进行一些热力学计算。掌握Young-Laplace公式,Kelvin公式和Gibbs吸附等温式,能对一些常见的表面现象进行解释以及进行一些简单计算。掌握Langmuir单分子吸附理论要点并能进行简单计算,掌握BET多分子层吸附理论要点及其主要应用。掌握气-固相表面催化反应的基本步骤、反应机理,能解释简单的表面反应动力学,以及利用反应机理、基元步骤活化能和吸附热等计算气-固相表面催化反应的表观活化能。
13、胶体分散系统和大分子溶液
考试内容
胶体的基本特性,溶胶的制备与净化,溶胶的动力性质、光学性质和电学性质,双电层理论和ζ电势,溶胶的稳定性和聚沉作用,乳状液,大分子溶液,凝胶,Donnan平衡和聚电解质溶液的渗透压,流变学简介,纳米材料及纳米粒子。
考试要求
了解分散系统的大概分类,了解溶胶的制备、净化方法及其应用。了解憎液溶胶的胶团结构,其在动力性质、光学性质和电学性质等方面的特点,以及如何利用相关特点对胶体进行粒度大小、带电情况等方面进行研究,了解电泳、电渗等实验技术在工业、生物学、医学等方面的应用。了解双电层理论模型及相关概念,了解溶胶在稳定性方面的特点及胶体稳定性的DLVO理论。了解乳状液的种类、乳化剂的作用,凝胶的分类、形成和主要性质。了解大分子溶液和溶胶的异同点,大分子物质平均摩尔质量的种类及其分布的测定方法,大分子溶液黏度的几种表示法。了解Donnan平衡,Newton流体和非Newton流体的区别及常见的流体类型。简单了解纳米材料的特性及制备方法。
掌握丁铎尔效应及其应用,掌握ζ电势等概念以及电解质对溶胶稳定性的影响,会判断电解质聚沉能力的大小。掌握如何用渗透压法准确测定聚电解质的数均摩尔质量。
三、参考书目
[1]傅献彩,沈文霞,姚天扬,侯文华.物理化学(第五版)上、下册.高等教育出版社,2006
[2]胡英主编.物理化学(第四版).高等教育出版社,1999
[3]孙德坤,沈文霞,姚天扬,侯文华.物理化学学习指导.高等教育出版社,2007
[4]范崇政,杭瑚,蒋淮渭.物理化学概念辨析·解题方法·应用实例(第4版).中国科学技术大学出版社,2010
2014年硕士研究生入学考试自命题考试大纲
考试科目代码:[729]考试科目名称:高分子化学与物理
一、试卷结构
1)试卷成绩及考试时间
本试卷满分为150分,考试时间为180分钟。
2)答题方式:闭卷、笔试
3)试卷内容结构
高分子化学部分50%高分子物理部分50%
4)题型结构
a:选择题,15小题,每小题2分,共30分
b:概念解释,5小题,每小题8分,共40分
c:问答题,8小题,每小题7分,共56分
d:合成路线设计(包括配方设计),2小题,每小题6分,共12分
e:应用题,1小题,12分
二、考试内容与考试要求
(一)高分子化学部分
1、高分子化学绪论
考试内容
高分子的基本概念聚合反应与聚合反应单体高分子化合物分类高分子的命名高分子链的形态高分子的化学结构聚合物的多分散性高分子科学史
考试要求
(1)理解高分子的概念,掌握高分子的表示法.
(2)了解聚合反应的类型、聚合反应单体的特征.
(3)了解高分子化合物的分类方法,具备对高分子分类的能力.
(4)了解高分子的命名法,具备一定的命名能力
(5)了解高分子链的形态和化学结构,理解聚合物的多分散性,熟悉高分子发展过程的关键事件和杰出科学工作者
2、逐步聚合反应
考试内容
逐步聚合反应的一般特征及其功能基反应类型逐步聚合反应的分类单体功能度与平均功能度线性逐步聚合反应非线性逐步聚合反应逐步聚合反应的实施方法一些重要的逐步聚合物
考试要求
(1)了解逐步聚合反应的一般特征及其功能基反应类型、具备逐步聚合反应的分类的能力.
(2)掌握功能度与平均功能度、线性逐步聚合反应和非线性逐步聚合反应概念.
(3)了解典型逐步聚合反应实施方法及其应用要求.
(4)重点了解聚酯、聚酰胺、酚醛树脂、聚氨酯和聚脲、环氧树脂以及脲醛树脂和三聚氰胺-甲醛树脂的单体、合成方法、合成条件和工业应用
3、自由基聚合反应
考试内容
链式聚合反应的一般特征与链式聚合单体自由基聚合引发剂和链引发反应链增长反应链终止、链转移反应自由基聚合反应动力学阻聚与缓聚自由基聚合反应产物的分子量聚合热力学聚合反应的实施方法重要自由基聚合产物
考试要求
(1)了解链式聚合反应的一般特征与链式聚合单体.
(2)掌握自由基聚合引发剂的种类,理解链引发、链增长、链终止及链转移反应的过程.
(3)掌握自由基聚合反应动力学,掌握阻聚与缓聚作用.
(4)了解影响自由基聚合反应产物的分子量的因素.
(5)理解聚合热力学,掌握聚合反应的实施方法,了解重要自由基聚合产物.
4、离子聚合
考试内容
离子聚合特征阳离子聚合阴离子聚合离子聚合的立体化学
考试要求
(1)理解离子聚合特征.
(2)掌握阳离子聚合单体、机理、动力学及工业应用.
(3)掌握阴离子聚合单体、机理、及动力学.
(4)理解离子聚合的立体化学.
5、链式共聚合反应
考试内容
共聚物类型和命名共聚反应的意义二元共聚物的组成二元共聚物的微观结构--序列长度分布竞聚率的测定及反应条件对竞聚率的影响自由基共聚合离子型共聚合
考试要求
(1)掌握共聚物类型和命名方法,了解共聚反应的意义.
(2)理解二元共聚物的组成,掌握二元共聚物的微观结构,理解序列长度分布及平均序列长度.
(3)掌握竞聚率的测定方法及反应条件对竞聚率的影响.
(4)理解自由基共聚合与离子型共聚合的相关概念.
6、配位聚合
考试内容
Ziegler-Natta引发剂与配位聚合聚合物的立体异构α-烯烃Ziegler-Natta聚合反应共轭二烯烃的配位聚合配位聚合的新型引发剂体系
考试要求
(1)掌握Ziegler-Natta引发剂,掌握配位聚合的基本概念.
(2)理解聚合物的立体异构类型.
(3)掌握α-烯烃Ziegler-Natta聚合反应的机理及聚合动力学行为.
(4)掌握共轭二烯烃的配位聚合的引发剂及聚合机理.
(5)了解配位聚合的新型引发剂体系.
7、活性聚合
考试内容
活性聚合概念和动力学特征活性阴离子聚合活性阳离子聚合基团转移聚合活性/可控自由基聚合活性聚合的应用
考试要求
(1)理解活性聚合概念和动力学特征.
(2)掌握活性阴离子聚合的特点和极性单体的活性阴离子聚合.
(3)掌握活性阳离子聚合的原理和单体结构对活性阳离子聚合的影响.
(4)理解基团转移聚合的特点及机理.
(5)掌握实现活性/可控自由基聚合的策略,掌握活性/可控自由基聚合的几种类型.
(6)了解活性聚合的应用.
8、开环聚合反应
考试内容
阳离子开环聚合反应阴离子开环聚合反应配位开环聚合反应自由基开环聚合反应开环易位聚合反应
考试要求
(1)掌握阳离子开环聚合反应的几种单体及链引发、链增长、链转移、链终止反应.
(2)掌握阴离子开环聚合反应的几种单体及链引发、链增长、链转移、链终止反应.
(3)掌握配位开环聚合反应.
(4)掌握自由基开环聚合反应.
(5)了解开环易位聚合反应.
9、高分子的化学反应
考试内容
高分子化学反应的特点、影响因素与分类高分子的相似转变扩链与嵌段反应接枝反应交联反应聚合物的降解反应
考试要求
(1)了解高分子化学反应的特点、影响因素与分类.
(2)了解高分子的相似转变.
(3)掌握扩链与嵌段反应、接枝反应、交联反应、聚合物的降解反应等反应类型.
10、功能高分子
考试内容
吸附分离功能高分子高分子试剂与高分子催化剂高分子分离功能膜生物医用高分子材料导电高分子
考试要求
(1)掌握吸附分离功能高分子的定义及几种主要的吸附分离树脂.
(2)了解高分子试剂与高分子催化剂的优越性,知道几种高分子试剂与高分子催化剂.
(3)掌握高分子分离功能膜的分离机理与分离过程.
(4)了解生物医用高分子材料与导电高分子.
(二)高分子物理部分
1、高分子物理概述
考试内容
高分子科学发展简史从小分子到大分子高分子的分子量和分子量分布分子量和分子量分布的测定方法高分子物质的类型聚合物的玻璃化转变
考试要求
(1)了解高分子科学发展简史,了解从小分子到大分子之间,其性质的变化.
(2)理解高分子的各种平均分子量的定义和分子量分布的表示方法.
(3)掌握分子量和分子量分布的测定方法.
(4)了解高分子物质的几种类型,理解聚合物的玻璃化转变.
2、高分子的链结构
考试内容
高分子链的构型高分子链的构象
考试要求
(1)理解高分子链的构型.
(2)理解高分子链的构象.
3、高分子的溶液性质
考试内容
聚合物的溶解过程和溶剂选择Flory-Huggins高分子溶液理论高分子的"理想溶液"--θ状态Flory稀溶液理论高分子溶液的相平衡和相分离高分子的标度概念和标度定律高分子的亚浓溶液温度和浓度对溶液中高分子链尺寸的影响高分子冻胶和凝胶聚电解质溶液高分子在溶液中的扩散柔性高分子在稀溶液中的黏性流动
考试要求
(1)理解聚合物的溶解过程,掌握溶剂选择的方法.
(2)理解Flory-Huggins高分子溶液理论,理解高分子的"理想溶液"--θ状态和Flory稀溶液理论.
(3)了解高分子溶液的相平衡和相分离,了解高分子的标度概念和标度定律.
(4)理解高分子的亚浓溶液,掌握温度和浓度对溶液中高分子链尺寸的影响.
(5)了解高分子冻胶和凝胶,了解聚电解质溶液,理解高分子在溶液中的扩散及柔性高分子在稀溶液中的黏性流动.
4、高分子的多组分体系
考试内容:
高分子共混物的相容性多组分高分子的界面性质高分子嵌段共聚物熔体与嵌段共聚物溶液
考试要求
(1)理解高分子共混物的相容性,掌握判断高分子共混物相容性的方法.
(2)理解多组分高分子的界面性质对两相黏合的影响.
(3)掌握高分子嵌段共聚物熔体与嵌段共聚物溶液的性质.
5、聚合物的非晶态
考试内容:
非晶态聚合物的结构模型非晶态聚合物的力学状态和热转变非晶态聚合物的玻璃化转变非晶态聚合物的黏性流动聚合物的取向态
考试要求:
(1)了解非晶态聚合物的结构模型.
(2)掌握非晶态聚合物的力学状态和热转变.
(3)重点掌握非晶态聚合物的玻璃化转变与非晶态聚合物的黏性流动.
(4)了解聚合物的取向态.
6、聚合物的结晶态
考试内容
常见结晶性聚合物中晶体的晶胞结晶性聚合物的球晶和单晶结晶聚合物的结构模型聚合物的结晶过程结晶聚合物的熔融和熔点结晶度对聚合物物理和机械性能的影响聚合物的液晶态
考试要求
(1)了解常见结晶性聚合物中晶体的晶胞,了解结晶性聚合物的球晶和单晶,掌握结晶聚合物的结构模型.
(2)重点掌握聚合物的结晶过程、结晶聚合物的熔融和熔点以及结晶度对聚合物物理和机械性能的影响.
(3)了解聚合物的液晶态.
7、聚合物的屈服和断裂
考试内容
聚合物的拉伸行为聚合物的屈服行为聚合物的断裂理论和理论强度影响聚合物实际强度的因素
考试要求
(1)了解不同状态聚合物的拉伸行为.
(2)理解聚合物的屈服行为.
(3)重点掌握聚合物的断裂理论和理论强度.
(4)重点掌握影响聚合物实际强度的因素.
8、聚合物的高弹性与粘弹性
考试内容
高弹性的热力学分析高弹性的分子理论交联网络的溶胀聚合物的力学松弛--黏弹性黏弹性的力学模型黏弹性与时间、温度的关系--时温等效原理聚合物黏弹性的实验研究方法聚合物的松弛转变及其分子机理
考试要求
(1)了解高弹性的热力学分析,理解高弹性的分子理论.
(2)理解交联网络的溶胀,理解聚合物的力学松弛--黏弹性.
(3)重点掌握黏弹性的力学模型,重点掌握时温等效原理.
(4)掌握测定聚合物黏弹性的实验方法,理解聚合物的松弛转变及其分子机理.
9、聚合物的其他性质
考试内容
聚合物的电学性质聚合物的光学性质聚合物的透气性高分子的表面和界面性质
考试要求
(1)了解聚合物的电学性质、光学性质和透气性.
(2)重点掌握高分子的表面和界面性质.
10、聚合物的分析与研究方法
考试内容
质谱法红外与拉曼光谱法核磁共振法小角激光散射法动态光散射法X射线衍射和X光小角散射法小角中子散射法激光共聚焦显微镜电子显微镜原子力显微镜聚合物的热分析--差示扫描量热法和差热分析
考试要求
(1)理解聚合物的各种分析研究方法的原理.
(2)掌握高分子的分析研究方法.
三、参考书目
[1]卢江,梁晖.高分子化学.化学工业出版社,2005.
[2]何曼君,张红东,陈维孝,董西侠.高分子物理(第三版).复旦大学出版社,2006.
- 2023-01-25工作后考研 三跨 394分上岸湖南师范大学哲学
- 2022-04-26湖师大心理学学硕考研经验与建议
- 2022-04-05中国史:一战川大,二战湖师大,两年心路历程。
- 2022-02-2319汉语言文字学(古代汉语方向)上岸
- 2022-02-05职业技术教育(旅游方向)四级未过
- 2022-01-22汉语言文字学!真题分享
- 2022-01-05湖南师大古代文学考研经验(18已过学姐)
- 2021-09-112021湖南师范大学英语语言文学考研经验分享
- 2021-08-29742语文课程与教学论-跨专业学姐的肺腑之言
- 2021-08-20湖南师范大学中国史历年初试真题(2013—2020)