2014年湖南师范大学070103概率论与数理统计考研大纲
考研网快讯,据湖南师范大学研究生院消息,2014年湖南师范大学概率论与数理统计考研大纲已发布,详情如下:2014年硕士研究生入学考试自命题考试大
2014年硕士研究生入学考试自命题考试大纲
考试科目代码:841考试科目名称:高等代数
一、试卷结构
1)试卷成绩及考试时间
本试卷满分为150分,考试时间为180分钟。
2)答题方式:闭卷、笔试。
3)试卷内容结构
北京大学数学系所编的高等代数第一章至第九章。
4)题型结构
a:填空题,5小题,每小题6分,共30分;
b:计算题,4小题,每小题15分,共60分;
c:证明题,4小题,每小题15分,共60分。
二、考试内容与考试要求
1、多项式
考试内容
数域,一元多项式,整除的概念,最大公因式,因式分解定理,重因式,多项式函数,复系数与实系数多项式的因式分解,有理系数多项式,多元多项式。
考试要求
(1)掌握数域的定义,并会判断一个代数系统是否是数域。
(2)正确理解数域P上一元多项式的定义,多项式相乘,次数,一元多项式环等概念。掌握多项式的运算及运算律。
(3)正确理解整除的定义,熟练掌握带余除法及整除的性质。
(4)正确理解和掌握两个(或若干个)多项式的最大公因式,互素等概念及性质。能用辗转相除法求两个多项式的最大公因式。
(5)正确理解和掌握不可约多项式的定义及性质。了解因式分解定理。
(6)正确理解和掌握k重因式的定义。
(7)掌握多项式函数的概念,余数定理,多项式的根及性质。正确理解多项式与多项式函数的关系。
(8)理解代数基本定理。熟练掌握复(实)系数多项式分解定理及标准分解式。
(9)正确理解和掌握本原多项式的定义及性质。掌握整系数多项式的有理根的计算。
(10)了解多元多项式的基本概念。
2、行列式
考试内容
排列,n级行列式的定义,n级行列式的性质,n级行列式的展开,行列式的计算,克拉默(Cramer)法则,拉普拉斯(Laplace)定理,行列式的乘法规则。
考试要求
(1)理解并掌握排列、逆序、逆序数、奇偶排列的定义。掌握排列的奇偶性与对换的关系。
(2)深刻理解和掌握n级行列式的定义,并能用定义计算一些特殊行列式。
(3)熟练掌握行列式的基本性质。
(4)正确理解矩阵、矩阵的行列式、矩阵的初等变换等概念,能利用行列式性质计算一些简单行列式。
(5)正确理解元素的余子式、代数余子式等概念。熟练掌握行列式按一行(列)展开的公式。掌握计算行列式的基本方法与技巧。
(6)熟练掌握克拉默(Cramer)法则,
(7)了解拉普拉斯(Laplace)定理,能初步利用行列式的乘法规则解决简单的问题。
3、线性方程组
考试内容
消元法,n维向量空间,线性相关性,矩阵的秩,线性方程组有解判别定理,线性方程组解的结构。
考试要求
(1)正确理解和掌握一般线性方程组,方程组的解,增广矩阵,线性方程组的初等变换等概念及性质。掌握阶梯形方程组的特征及作用。会求线性方程组的一般解。
(2)理解和掌握n维向量及两个n维向量相等的定义。熟练掌握向量的运算规律和性质。
(3)正确理解和掌握线性组合、线性相关、线性无关的定义及性质。掌握两个向量组等价的定义及等价性质定理。深刻理解向量组的极大无关组、秩的定义,并会求向量组的一个极大无关组。
(4)深刻理解和掌握矩阵的行秩、列秩,以及矩阵的秩的定义。掌握矩阵的秩与其子式的关系。
(5)熟练掌握线性方程组的有解判别定理。理解和掌握线性方程组的公式解。
(6)正确理解和掌握齐次线性方程组的基础解系。了解解空间的概念。熟练掌握基础解系的求法、线性方程组的结构定理。并对有解的一般线性方程组,会求其全部解。
4、矩阵
考试内容
矩阵的概念,矩阵的运算,矩阵乘积的行列式与秩,矩阵的逆,矩阵的分块,初等矩阵,分块乘法的初等变换及应用。
考试要求
(1)掌握矩阵的的加法、数乘、乘法、转置等运算及其计算规律。
(2)掌握矩阵乘积的行列式定理,矩阵乘积的秩与它的因子的秩的关系。
(3)正确理解和掌握可逆矩阵、逆矩阵、伴随矩阵等概念,掌握一个n阶方阵可逆的充要条件和用公式法求一个矩阵的逆矩阵。
(4)理解分块矩阵的意义,掌握分块矩阵的加法、乘法的运算及性质。
(5)正确理解和掌握初等矩阵、初等变换等概念及它们之间的关系,熟练掌握一个矩阵的等价标准形和矩阵可逆的充要条件;会用初等变换的方法求一个方阵的逆矩阵。
(6)理解分块乘法的初等变换和广义初等矩阵的关系,会求分块矩阵的逆。
5、二次型
考试内容
二次型的矩阵表示,标准型,唯一性,正定(半正定)二次型。
考试要求
(1)正确理解二次形和非退化线性替换的概念,掌握二次型的矩阵表示及二次型与对称矩阵的一一对应关系,掌握矩阵的合同概念及性质。
(2)理解二次型的标准形,掌握化二次型为标准形的两种基本方法。
(3)正确理解复数域和实数域上二次型的规范性的唯一性,了解符号差、惯性指数等概念,掌握惯性定理的证明思想。
(4)正确理解正定、半正定、负定二次型及正定、半正定矩阵等概念,熟练掌握正定二次型(半正定二次型)的若干等价条件。
6、线性空间
考试内容
集合、映射,线性空间的定义与简单性质,维数、基与坐标,基变换与坐标变换,线性子空间,子空间的交与和,子空间的直和,线性空间的同构。
考试要求
(1)正确理解和掌握线性空间的定义及性质,会判断一个代数系统是否为线性空间。
(2)理解线性组合、线性表示、线性相关、线性无关等概念,正确理解和掌握n维线性空间的概念及性质。
(3)基变换与坐标变换的关系。
(4)正解理解和掌握基之间的过渡矩阵及其性质。
(5)正确理解线性子空间的定义及判别定理,掌握线性方程组的解空间的概念和性质,掌握向量组生成子空间的定义及等价条件。
(6)掌握子空间的交与和的定义及性质,掌握维数公式并能熟练运用。
(7)深刻理解子空间的直和的概念,以及判断直和的若干充要条件。
7、线性变换
考试内容
线性变换的定义,线性变换的运算,线性变换的矩阵,特征值与特征向量,对角矩阵,线性变换的值域与核,不变子空间,若尔当(Jordan)标准形介绍,最小多项式。
考试要求
(1)理解和掌握线性变换的定义及性质。
(2)掌握线性变换的运算及运算规律,理解线性变换的多项式。
(3)深刻理解和掌握线性变换与矩阵的联系,掌握矩阵相似的概念和线性变换在不同基下的矩阵相似等性质。
(4)理解和掌握矩阵的特征值、特征向量、特征多项式的概念和性质,会求一个矩阵的特征值和特征向量,掌握相似矩阵与它们的特征多项式的关系及哈密顿-凯莱定理。
(5)掌握n维线性空间中一个线性变换在某一组基下的矩阵为对角矩阵的充要条件。
(6)掌握线性变换的值域、核、秩、零度等概念,深刻理解和掌握线性变换的值域与它对应的矩阵的秩的关系及线性变换的秩和零度间的关系。
(7)掌握不变子空间的定义,会判定一个子空间是否是A-子空间,深刻理解不变子空间与线性变换矩阵化简之间的关系,掌握将空间V按特征值分解成不变子空间和直和表达式。
(8)了解若尔当(Jordan)标准形及其相关性质。
(9)掌握最小多项式的定义和基本性质,会求任意Jordan标准形矩阵的最小多项式。
8、λ-矩阵
考试内容
-矩阵的定义,-矩阵在初等变换下的标准型,不变因子,矩阵相似的条件,初等因子,若尔当(Jordan)标准形的理论推导,矩阵的有理标准形。
考试要求
(1)了解-矩阵的定义,理解-矩阵可逆的充要条件。
(2)了解-矩阵的行列式因子、不变因子、初等因子及其之间关系。
(3)了解-矩阵的等价标准形
(4)了解特征矩阵E-A之间的等价和矩阵之间的相似的关系。
9、欧几里德空间
考试内容
定义与基本性质,标准正交基,同构,正交变换,子空间,实对称矩阵的相似标准形,向量到子空间的距离,最小二乘法。
考试要求
(1)深刻理解欧氏空间的定义及性质,深刻理解内积的本质,掌握向量的长度,两个向量的夹角、单位向量、正交及度量矩阵等概念和基本性质,掌握各种概念之间的联系和区别。
(2)正确理解正交向量组、标准正交基的概念,掌握施密特正交化过程,并能把一组线性无关的向量化为单位正交的向量。
(3)正确理解和掌握正交变换的概念及几个等价关系,掌握正交变换与向量的长度,标准正交基,正交矩阵间的关系。
(4)正确理解和掌握两个子空间正交的概念,掌握正交与直和的关系,及有限维欧氏空间中的每一个子空间都有唯一的正交补的性质。
(5)深刻理解并掌握任一个实对称矩阵均可正交相似于一个对角阵,并掌握求正交阵的方法。能用正交变换化实二次型为标准型。
(6)正确计算向量之间的距离,了解最小二乘法原理。
三、参考书目
1、北京大学数学系编,高等代数(第三版),高等教育出版社,北京(2003);
2、张禾瑞,郝炳新编,高等代数(第五版),高等教育出版社,北京(2008)。
2014年硕士研究生入学考试自命题复试考试大纲
考试科目代码:[]考试科目名称:概率论与数理统计
一、考试形式与试卷结构
1)试卷成绩及考试时间
本试卷满分为100分,考试时间为180分钟。
2)答题方式
答题方式为闭卷、笔试。
3)试卷内容结构
各部分内容所占分值为:
概率论部分约60分
数理统计部分约40分
4)题型结构
填空题:约30分
单项选择题:约20分
计算题:约50分
二、考试内容与考试要求
《概率论》部分
概率论考试内容主要包括:随机事件概念及其运算,概率的定义及其性质,条件概率及其相关公式;随机变量的概念,随机变量的分布函数的概念及其性质,随机变量函数的分布,随机向量的边缘分布,条件分布;随机变量的数学期望,随机变量的方差,协方差与相关系数,条件数学期望的概念、性质及其应用;随机变量的特征函数的概念、性质及其应用;随机变量序列的依概率收敛,依分布收敛的概念及其性质大数定律及中心极限定理;大数定律及中心极限定理。要求考生掌握概率论的基本原理和基础知识,了解概率论知识在各相关专业学科中的应用,具有独立分析和解决概率问题的能力。
一、随机事件及其概率
理解随机事件、频率的概念、概率的统计定义;理解样本空间和样本点的概念;掌握随机事件的运算法则;掌握概率的古典定义,并能计算基本的古典概型问题;掌握概率的几何定义,并能计算基本的几何概型问题;理解概率的公里化体系的知识;理解并掌握概率的基本性质,并能正确地运用概率的基本性质解决实际问题;理解条件概率的含义,掌握条件概率的计算公式;能利用乘法公式和事件的独立性计算积(交)事件的概率;能利用全概率公式和贝叶斯公式计算有关的概率问题;理解n重独立试验及n重贝努里(Bernoulli)试验的含义,并会利用二项概率公式计算在n重贝努里试验中,事件A恰好出现k次的概率。
二、随机变量及其分布
理解随机变量的概念;掌握离散型随机变量和连续型随机变量的描述方法;理解分布列与概率密度的概念及其性质;理解分布函数的概念及性质;会应用概率分布计算有关事件的概率;掌握二项分布、泊松分布、均匀分布、正态分布、指数分布、伽玛分布、贝塔分布的概率分布、数学期望和方差;利用切比晓夫不等式估计有关事件的概率;会求随机变量的简单函数的分布;求给定分布的其他数字特征。
三、多维随机变量及其分布
理解多维随机变量的概念;理解二维随机变量的分布函数及其性质,理解二维离散型随机变量的分布列及其性质。理解二维连续型随机变量的概率密度及其性质,并会用它们计算有关事件的概率;掌握二维随机变量的边缘分布与联合分布的关系,并会计算边缘分布;理解条件分布的概念,掌握离散型随机向量的条件分布律及连续型随机向量的条件分布函数和条件密度函数的计算公式,并会由之进行计算;掌握多项分布、多维超几何分布、多维均匀分布和二维正态分布;理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算;会求两个独立随机变量的简单函数的分布;掌握由卷积公式求连续的独立随机变脸和的分布;掌握由变量变换法求连续随机向量的联合密度函数;掌握协方差和相关系数的计算公式;掌握随机变量的条件数学期望的计算;会运用重数学期望公式计算随机变量的数学期。
四、大数定律及中心极限定理
掌握随机变量的特征函数的性质及其应用;掌握常用分布的特征函数;掌握依概率收敛的概念及大数定律,能证明给定的随机变量序列服从大数定理;掌握林德伯格一列维中心极限定理(独立同分布的中心极限定理)和德莫佛一拉普拉斯定理(二项分布以正态分布为极限分布)及一般的独立不同分布中心极限定理,并会用相关定理近似计算有关事件的概率。
《数理统计》部分
数理统计考试内容主要包括:样本与统计量的概念,样本均值和样本方差的概念及其计算,抽样分布理论;参数的点估计的概念、几种求参数的点估计的方法(矩估计法与最大似然估计法),参数的点估计评价(估计的相合性、无偏性、有效性、一致最小方差无偏估计),参数的区间估计;假设检验的基本概念,正态总体的假设检验,其他分布的假设检验,分布拟合检验,检验的P值;一元线性回归;单因素方差分析。
一、统计量及其分布
理解个体、总体及样本和统计量的概念;能求出给定总体分布的样本次序统计量的分布及其联合分布;掌握样本均值、样本方差及样本标准差、样本矩、样本分位数、样本中位数的求法;理解分布、t分布、F分布的定义并会查表求分位点(临界值);掌握统计推断中常用的几个统计量的分布;对给定的总体分布,能求出参数的充分统计量。
二、参数估计
理解点估计概念,掌握矩估计法与极大似然估计法;理解无偏估计、渐近无偏估计、估计的有效性、估计的相合的概念;理解区间估计的概念、单侧区间估计的概念,掌握来自正态总体的样本均值(均值差)及方差的区间估计法;理解最小方差无偏估计的概念,会求费希尔信息量。
三、假设检验
理解假设检验的基本思想,掌握假设检验的基本步骤;理解假设检验中的两类错误;掌握一个正态总体均值与方差的假设检验;掌握二个正态总体均值与方差的假设检验;掌握指数分布参数的检验;理解大样本参数的假设检验;理解并掌握检验的p值;理解并掌握总体分布的非参数假设检验(分布拟合的优度检验)。
四、方差分析及回归分析:
理解线性回归的基本思想,掌握最小二乘法,一元线性回归,参数估计量的性质及假设检验;理解方差分析的思想,掌握单因素方差分析。
参考书:
茆诗松,程依明,濮晓龙,概率论与数理统计教程,高等教育出版社,2004
- 2023-01-25工作后考研 三跨 394分上岸湖南师范大学哲学
- 2022-04-26湖师大心理学学硕考研经验与建议
- 2022-04-05中国史:一战川大,二战湖师大,两年心路历程。
- 2022-02-2319汉语言文字学(古代汉语方向)上岸
- 2022-02-05职业技术教育(旅游方向)四级未过
- 2022-01-22汉语言文字学!真题分享
- 2022-01-05湖南师大古代文学考研经验(18已过学姐)
- 2021-09-112021湖南师范大学英语语言文学考研经验分享
- 2021-08-29742语文课程与教学论-跨专业学姐的肺腑之言
- 2021-08-20湖南师范大学中国史历年初试真题(2013—2020)