2014年湖南师范大学070103概率论与数理统计考研大纲
考研网快讯,据湖南师范大学研究生院消息,2014年湖南师范大学概率论与数理统计考研大纲已发布,详情如下:2014年硕士研究生入学考试自命题考试大
2014年硕士研究生入学考试自命题考试大纲
考试科目代码:[]考试科目名称:泛函分析
一、试卷结构
1)试卷成绩及考试时间
本试卷满分为100分,考试时间为180分钟。
2)答题方式:闭卷、笔试
3)试卷内容结构
泛函分析100%
4)题型结构
a:判断题,20分
b:填空题,20分
c:计算题,10分
d:证明题,50分
二、考试内容与考试要求
1、距离空间和赋范线性空间
考试内容
(1)距离空间:距离空间的概念,距离空间中的开集闭集,稠密性与可分性,连续映射的概念,距离空间中的完备性,列紧集,紧集及其上连续映射,具体空间列紧集的判定定理,压缩映射原理及其应用。
(2)赋范线性空间:线性空间、范数、赋范线性空间、Banach空间等概念,赋范线性空间上范数的等价性,常见的具体Banach空间及其常用的范数的定义。
考试要求
(1)熟悉距离空间的概念和一些具体的距离空间;理解距离空间中的开集闭集,稠密集与空间的可分性;熟练掌握连续映射的概念、距离空间中的完备性、列紧集和紧集以及其上连续映射的性质;掌握具体空间列紧集的判定法;熟练掌握压缩映射原理,并会用压缩映射原理分析映射的不动点。
(2)理解线性空间、范数、赋范线性空间等概念;掌握Banach空间、线性赋范空间上范数的等价性;熟悉某些常见Banach空间中常用的范数的定义。
2、有界线性算子与连续线性泛函
考试内容
有界线性算子和连续线性泛函的概念和其性质,线性算子空间、共轭(对偶)空间,某些常见Banach空间的共轭空间。
考试要求
掌握有界线性算子和连续线性泛函的概念和其性质,并会计算界线性算子和连续线性泛函的范数;理解线性算子的连续性和有界性,熟悉算子空间、共轭(对偶)空间的基本性质和某些常见Banach空间的共轭空间。
3、Hilbert空间
考试内容
内积空间的基本概念与基本性质、几何特征、正交系、正规正交基、正交化,Hilbert空间的同构,射影定理、Hilbert空间上的Riesz表示定理。
考试要求
熟悉内积空间的基本概念与基本性质、几何特征;熟练掌握正交系、正规正交基、正交化、射影定理;理解Hilbert空间的同构、Hilbert空间上的Riesz表示定理。
4、Banach空间的基本定理
考试内容
Hahn-Banach延拓定理及其推论,Riesz表示定理及应用,共轭算子及其性质,第一、第二纲的集,纲定理,一致有界定理及应用,开映射定理,闭图象定理,弱收敛和弱收敛。
考试要求
熟练掌握Hahn-Banach延拓定理的推论、Riesz表示定理、一致有界定理及应用、开映射定理、闭图象定理;掌握共轭算子及其性质;理解Hahn-Banach延拓定理、第一、第二纲的集;了解弱收敛和弱收敛。
教材及主要参考书:
[1]江泽坚,孙善利,泛函分析,高等教育出版社。
[2]程其襄等,实变函数论与泛函分析基础,高等教育出版社。
2014年硕士研究生入学考试自命题考试大纲
考试科目代码:[]考试科目名称:实变函数
一、考试形式与试卷结构
1)试卷成绩及考试时间:
本试卷满分为100分,考试时间为180分钟。
2)答题方式:闭卷、笔试
3)试卷内容结构
(一)测度论与可测函数部分40%
(二)Lebesgue积分与不定积分部分60%
4)题型结构
a:计算题,2小题,每小题11分,共22分
b:证明题,6小题,每小题13分,共78分
二、考试内容与考试要求
(一)测度论与可测函数部分
1、n维欧式空间中的点集
考试内容:开集、闭集的构造、分离定理
考试要求:
要求考生熟练掌握开集闭集的概念及其构造定理。
要求考生理解Cantor集。
要求考生熟练掌握分离定理。
2、测度论
考试内容:Lebesgue外测度,可测集、可测集类
考试要求:
测度的定义和性质;
掌握Lebesgue外测度和测度的定义和基本性质;
练掌握由卡拉皆屋铎利给出可测集的定义及可测集的基本运算性质。
掌握零测集的性质;开集、闭集的可测性;
了解特殊的两类集合,波雷耳集。
3、可测函数
考试内容:可测函数及其性质,几乎处处收敛,叶果洛夫定理,可测函数的构造,依测度收敛
考试要求:
熟练掌握可测函数及其四则运算,可测函数与简单函数的关系,几乎处处成立的概念;
理解叶果洛夫定理;
理解并掌握鲁津定理及其逆定理;
熟练掌握依测度收敛的定义,几乎处处收敛与依测度收敛的几个反例,Riese定理和Lebesgue收敛定理
(二)Lebesgue积分与不定积分部分
1、Lebesgue积分的概念与性质
考试内容:勒贝格积分的定义,勒贝格积分的性质,一般可积函数,积分的极限定理
考试要求:
理解勒贝格积分的定义,掌握可积的两个充要条件;可积的四则运算,勒贝格积分与Riemann积分的关系;
熟练掌握勒贝格积分的基本性质和绝对连续性;
熟练掌握一般可积函数的L积分的定义和初等性质。
牢记勒贝格控制收敛定理,列维定理,L逐项积分定理,积分的可数可加性,Fatou引理及有关积分与求导交换的定理。
2、微分和不定积分
考试内容:有界变差函数、绝对连续函数
考试要求:
熟练掌握有界变差的定义,理解Lebesgue定理;
充分理解绝对连续函数,并理解绝对连续函数与不定积分的关系。
三、参考书目
[1]江泽坚等编《实变函数论》(第3版),高等教育出版社,2007年第3版.
[2]程其襄等编《实变函数与泛函分析基础》,高等教育出版社,2003年第2版.
点击【2014年湖南师范大学各学院考研大纲汇总】查看更多考研大纲。
【相关阅读】
研究生招生专业索引
2014年研究生考试大纲汇总
友情提示: 考研信息数量巨大,整理过程中难免出错,欢迎广大研友指正。此外很多历史数据已无处查找,所以为保证考研信息的完整性,考研网真诚欢迎广大研友帮忙补充信息,可回复评论或发送内容至http://bbs.kaoyan.com/f3p1。 本文系考研网精心整理,转载请注明出处。 |
- 2023-01-25工作后考研 三跨 394分上岸湖南师范大学哲学
- 2022-04-26湖师大心理学学硕考研经验与建议
- 2022-04-05中国史:一战川大,二战湖师大,两年心路历程。
- 2022-02-2319汉语言文字学(古代汉语方向)上岸
- 2022-02-05职业技术教育(旅游方向)四级未过
- 2022-01-22汉语言文字学!真题分享
- 2022-01-05湖南师大古代文学考研经验(18已过学姐)
- 2021-09-112021湖南师范大学英语语言文学考研经验分享
- 2021-08-29742语文课程与教学论-跨专业学姐的肺腑之言
- 2021-08-20湖南师范大学中国史历年初试真题(2013—2020)